Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers

نویسندگان

  • Yann Bugeaud
  • Maurice Mignotte
  • Samir Siksek
چکیده

This is the first in a series of papers whereby we combine the classical approach to exponential Diophantine equations (linear forms in logarithms, Thue equations, etc.) with a modular approach based on some of the ideas of the proof of Fermat’s Last Theorem. In this paper we give new improved bounds for linear forms in three logarithms. We also apply a combination of classical techniques with the modular approach to show that the only perfect powers in the Fibonacci sequence are 0, 1, 8 and 144 and the only perfect powers in the Lucas sequence are 1 and 4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost powers in the Lucas sequence

The famous problem of determining all perfect powers in the Fibonacci sequence (Fn)n≥0 and in the Lucas sequence (Ln)n≥0 has recently been resolved [10]. The proofs of those results combine modular techniques from Wiles’ proof of Fermat’s Last Theorem with classical techniques from Baker’s theory and Diophantine approximation. In this paper, we solve the Diophantine equations Ln = qy, with a > ...

متن کامل

The (non-)existence of perfect codes in Lucas cubes

A Fibonacci string of length $n$ is a binary string $b = b_1b_2ldots b_n$ in which for every $1 leq i < n$, $b_icdot b_{i+1} = 0$. In other words, a Fibonacci string is a binary string without 11 as a substring. Similarly, a Lucas string is a Fibonacci string $b_1b_2ldots b_n$ that $b_1cdot b_n = 0$. For a natural number $ngeq1$, a Fibonacci cube of dimension $n$ is denoted by $Gamma_n$ and i...

متن کامل

Fibonacci Numbers at Most One Away from a Perfect Power

The famous problem of determining all perfect powers in the Fibonacci sequence and the Lucas sequence has recently been resolved by three of the present authors. We sketch the proof of this result, and we apply it to show that the only Fibonacci numbers Fn such that Fn ± 1 is a perfect power are 0, 1, 2, 3, 5 and 8. The proof of the Fibonacci Perfect Powers Theorem involves very deep mathematic...

متن کامل

A Generalized Fibonacci Sequence and the Diophantine Equations $x^2pm kxy-y^2pm x=0$

In this paper some properties of a generalization of Fibonacci sequence are investigated. Then we solve the Diophantine equations $x^2pmkxy-y^2pm x=0$, where $k$ is positive integer, and describe the structure of solutions.

متن کامل

Classical and Modular Approaches to Exponential Diophantine Equations Ii. the Lebesgue–nagell Equation

This is the second in a series of papers where we combine the classical approach to exponential Diophantine equations (linear forms in logarithms, Thue equations, etc.) with a modular approach based on some of the ideas of the proof of Fermat’s Last Theorem. In this paper we use a general and powerful new lower bound for linear forms in three logarithms, together with a combination of classical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004